紹介

NOC技術ノート No.244

各種加硫促進剤の金属(銅)腐食性について

パッキン、ガスクケット、ホースその他のシーリング材として使用されているゴム製品は、長期間あるいは高温で金属と接触した状態で使用される場合が多く、金属の腐食あるいは変色に及ぼすゴム製品の影響が特に自動車関係、電気関係で問題視されている。

鋼鉄の変色に及ぼす加硫ゴム(NBR配合系)の影響については、Trexlerらによって検討されている。また、合成ゴム製品においても同様に NBR 配合系で検討しており、加硫剤、老化防止剤、変色系、塩素系などの配合剤が鋼鉄、銅合金、アルミニウムの腐食あるいは変色に影響を及ぼし、特に金属の中では鋼鉄のみ腐食の状態が起こり、銅合金、アルミニウムは変色のみを生じたことなどは報告されている。

ゴム用配合雑品の中で特に金属の腐食あるいは変色に影響を及ぼすものとしては、硫黄及び加硫促進剤(有機硫黄化合物)があり、これらは鋼との接触で硫化鋼及び有機鋼塩が生成され、腐食あるいは変色に結びつくものと考えられる。

大澤らは、硫黄と加硫促進剤によるゴムの加硫中に鋼が黒変することを認め、鋼 Wire 質料について分析を行い、硫化物のみではなく、硫黄のほか塩素、炭素、水素も含まれることを認めており、有機鋼塩の存在を認めている。

弊社においては、銅の腐食あるいは変色を起こさない硫黄加硫系の探求として、まず加硫剤及び加硫促進剤そのもの自体の鋼腐食(変色)に及ぼす影響について検討し、実験Ⅰ、更に実際の加硫ゴムが鋼腐食(変色)に及ぼす影響について検討した。実験Ⅱを紹介する。

鋼板と試料(加硫剤又は加硫促進剤を除いて)を加熱した後の銅板の腐食、変色についての結果を表Ⅰに示し、鋼板の腐食、変色については目視によって観察し、その度合を 0 ～ 4 で示した。硫黄、RS、TS、TR A、TT CU、C などは、鋼の腐食、変色が著しい。その中で特に硫黄、TR A が非常に著しいことが認められた。しかし、TET については、TT、TRA、R と同様に硫黄放出性であるにもかかわらず、鋼の腐食、変色が非常に小さいことが認められた。また、ジチオカルバミン酸金属塩の PZ(亜鉛塩)、E Z(亜鉛塩)、T TFE(亜鉛塩)などは、鋼の腐食、変色が非常に小さいことが認められた(ただし、銅塩の TT CU は鋼の腐食、変色が大きい)。また、ミクロン系の M、DM、スルホキシル系の CZ、ナノニン系の D などは、鋼の腐食、変色にほとんど影響を及ぼさないことが認められた。

(実験 I)の結果より鋼の腐食、変色に影響を及ぼさない硫黄加硫系としては、硫黄量を少量にし、かつ加硫促進剤としては、チアゾール系、スルホキシル系、ジチオカルバミン酸金属塩系などを使用することが好ましい。

更に鋼の腐食、変色に及ぼす加硫態ゴムの影響について検討した実験Ⅱの結果を表Ⅱに示した。その結果、試料 No.4 の硫黄と PX と DM の加硫系で得られた加硫ゴムがほかの加硫ゴム試料に比べて、鋼の腐食、変色に及ぼす影響が非常に小さいことが認められた。

引用文献
3) 大北忠男: 日ゴム協会, 51, (5), 324 (1978)

【実験 I】

1. 鋼板腐食性に及ぼす加硫剤、加硫促進剤の影響
1.1 試験方法
試験用燃料油をイソオクタン:トルエン＝4:6) 300 ml に試料(加硫剤又は加硫促進剤)を 0.17% 添加し、次に変色及び腐食のない鋼板 (30 mm × 30 mm × 2 mm) を浸させた。80℃で5時間加熱し、更に加熱中止後、室温で1昼夜放置し、鋼板を取り出し、乾燥させ、腐食状態を観察した。

(87)
1.2 試験結果

表1 鋼板腐食性（加硫剤又は加硫促進剤の影響）

<table>
<thead>
<tr>
<th>加硫剤</th>
<th>鋼板腐食（変化状態）</th>
<th>鋼板腐食（変化状態）</th>
</tr>
</thead>
<tbody>
<tr>
<td>硫黄</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>パルノック</td>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>ノラッター</td>
<td>TS</td>
<td>3</td>
</tr>
<tr>
<td>TET</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TRA</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>EZ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TTFE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CZ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAF+50</td>
<td>DOP+15</td>
<td>15</td>
</tr>
<tr>
<td>150℃×20分プレス加硫</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試料 No.</th>
<th>加硫糸 (phr)</th>
<th>配合量 (phr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$+$ + PZ + DM (0.3+1.1+1.2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$+$ + EZ + DM (0.3+1.1+1.2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$+$ + PX + DM (0.3+1.1+1.2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$+$ + TT + CZ (0.3+0.5+1.0)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$+$ + EZ + CZ (0.3+1.3+1.0)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R + TT + CZ (1.1+0.5+1.0)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

2.2 試験結果

表3 鋼板腐食性（加硫ゴムの影響）

<table>
<thead>
<tr>
<th>試料 No.</th>
<th>加硫系</th>
<th>配合量 (phr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$+$ + PZ + DM (0.3+1.1+1.2)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$+$ + EZ + DM (0.3+1.1+1.2)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$+$ + PX + DM (0.3+1.1+1.2)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$+$ + TT + CZ (0.3+0.5+1.0)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$+$ + EZ + CZ (0.3+1.3+1.0)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>R + TT + CZ (1.1+0.5+1.0)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

腐食、変化状態の模式は表1(1.2試験結果の項)の場合と同様行った。

![図1 鋼板の腐食性試験](image)

図1 ゴム試料のレオメータ試験

東洋精機製オシレーティングディスクレオメータ

表4 ゴム試料の引張試験

<table>
<thead>
<tr>
<th>試料 No.</th>
<th>加硫系 (phr)</th>
<th>配合量 (phr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$+$ + PZ + DM (0.3+1.1+1.2)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>$+$ + EZ + DM (0.3+1.1+1.2)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>$+$ + PX + DM (0.3+1.1+1.2)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>$+$ + TT + CZ (0.3+0.5+1.0)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>$+$ + EZ + CZ (0.3+1.3+1.0)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>R + TT + CZ (1.1+0.5+1.0)</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

*図1 ゴム試料の加硫特性については図1及び表4に示す。