低温加硫について（6）
【SBR配合】

通常の加硫温度（140～160℃）では加硫できない場合、例えば、軟化点の低い材料にゴムコーティングをし加硫を行う場合、またゴム製タイヤを水洗で加硫する場合（100℃以下）など低温加硫が必要になる。

特に、NR配合における低温加硫（主にSBR）について検討し、ノクセラ－M（チラコール系加硫促進剤）、ノクセラ－TT（チラム系加硫促進剤）及びノックマスターEGS（加硫活性剤）の三者併用が著しく加硫を促進し、低温短時間加硫できることを紹介した（No.274～275）。また、ノクセラ－M＋ノクセラ－TT＋ノクセラ－Dの三者併用で著しく加硫を促進するが、ノクセラ－Dの使用は、白色配合ゴムでは着色（変色）する場合があるので注意が必要となる。

硫黄加硫の低温短時間加硫では、材料となるゴムの種類に左右される、NRでは加硫温度が達い、好都合であるが、SBR、NBR、EPDM、HCRなどの合成ゴムでは加硫温度が低く、低温短時間加硫は難しい。図1にNR配合とSBR配合の加硫温度の比較としてM（1phr）+TT（0.5phr）+EGS（2phr）の三者併用の場合のキュラストメータ加硫曲線を示した。SBR配合ではNR配合に比べて、加硫速度が非常に速いことがわかる。SBR配合で加硫速度を速くするためには、加硫促進剤の配合量をNR配合に比べて、多くを使用しなければならない。図2に、M+TT+EGSの併用において、M及びEGSを増量した場合のキュラストメータ加硫曲線（100℃）を示した。加硫促進剤及び加硫活性剤を増量することによって、加硫速度が著しく増し、低温短時間加硫も可能となることがわかる。

今回はSBR配合における低温加硫系として、ノクセラ－M＋ノクセラ－TT＋PPD、PZ、TTCU、TFFE、TTEとの組み合わせについての実験データを紹介する。

加硫を速める併用剤として、表2及び図3のキュラストテメータ加硫曲線から、PZ（試料No.3）、TTFE（試料No.5）、TTE（試料No.6）であることが認められ、また、TTの併用（試料No.1）は、加硫促進時間（t60%）が短く（加工安定性に優れている）、加硫の立ち上がりも比較速いことが認められる。

今後生地の貯蔵安定性について（表3）、PPDの併用（試料No.2）は貯蔵後（32℃×14日間）に着色の粘度（Vn）の上昇が認められ、貯蔵安定性が悪いことがわかる。一方、PZの併用（試料No.3）及びTTCUの併用（試料No.4）は今後生地の貯蔵安定性に優れていることがわかる。

図1 キュラストメータ加硫曲線、100℃
NR配合；NR100、ステアリン酸3、鍍化亜鉛5、HAFブラック40、硫黄2
SBR配合；JSR1500 100、ステアリン酸1、鍍化亜鉛5、HAFブラック40、硫黄2

図2 キュラストメータ加硫曲線、100℃
配合；SBR100、ステアリン酸1、鍍化亜鉛5、HAFブラック40、硫黄2
実験

1. 配合

SBR (JSR 1500) 100
ステアリン酸 1
酸化亜鉛 3
HAF グラック 40
硫酸 2
酸化亜鉛：活性剤 1 試料 1 に示す

2. 試料

| 1) ノクセラ M(2) + EGS* (3) + ノクセラ TT (0.5) |
| 2) - (+) (+) (+) (+) + PPD (5) |
| 3) - (+) (+) (+) (+) + PZ (5) |
| 4) - (+) (+) (+) (+) + TTCU (5) |
| 5) - (+) (+) (+) (+) + TTFE (5) |
| 6) - (+) (+) (+) (+) + TTFE (5) |

*ノクセラ ES：酸塩活性剤、TTFE：内 pbr

3. キュラスタメータ試験
JSR-Ⅱ型

<table>
<thead>
<tr>
<th>試 料</th>
<th>加熱温度 (℃)</th>
<th>M100</th>
<th>10℃</th>
<th>100℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M + EGS + TT</td>
<td>120</td>
<td>38</td>
<td>7.40</td>
<td>10.20</td>
</tr>
<tr>
<td>2. - + + + PPD</td>
<td>120</td>
<td>40</td>
<td>4.30</td>
<td>19.00</td>
</tr>
<tr>
<td>3. - + + + PZ</td>
<td>120</td>
<td>40</td>
<td>4.20</td>
<td>14.00</td>
</tr>
<tr>
<td>4. - + + + TTCU</td>
<td>120</td>
<td>36</td>
<td>12.00</td>
<td>26.00</td>
</tr>
<tr>
<td>5. - + + + TTFE</td>
<td>120</td>
<td>40</td>
<td>3.00</td>
<td>7.20</td>
</tr>
<tr>
<td>6. - + + + TTFE</td>
<td>120</td>
<td>40</td>
<td>3.40</td>
<td>16.00</td>
</tr>
</tbody>
</table>

4. ムーニースコーチ試験 貯蔵安定性

<table>
<thead>
<tr>
<th>試料</th>
<th>貯蔵日数 (日)</th>
<th>Nm</th>
<th>1s</th>
<th>t=300</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M + EGS + TT</td>
<td>0</td>
<td>58</td>
<td>14.40</td>
<td>4.20</td>
</tr>
<tr>
<td>2. - + + + PPD</td>
<td>0</td>
<td>60</td>
<td>9.00</td>
<td>2.90</td>
</tr>
<tr>
<td>3. - + + + PZ</td>
<td>0</td>
<td>61</td>
<td>9.00</td>
<td>2.20</td>
</tr>
<tr>
<td>4. - + + + TTCU</td>
<td>0</td>
<td>58</td>
<td>20.00</td>
<td>6.00</td>
</tr>
<tr>
<td>5. - + + + TTFE</td>
<td>0</td>
<td>58</td>
<td>8.10</td>
<td>2.90</td>
</tr>
<tr>
<td>6. - + + + TTFE</td>
<td>0</td>
<td>60</td>
<td>6.40</td>
<td>2.00</td>
</tr>
</tbody>
</table>

5. 引張試験
JIS K 6301に基づき、100℃プレス加硫

<table>
<thead>
<tr>
<th>試料</th>
<th>加硫時間 (分)</th>
<th>M100</th>
<th>Hs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M + EGS + TT</td>
<td>20</td>
<td>18.9</td>
<td>280</td>
</tr>
<tr>
<td>2. - + + + PPD</td>
<td>20</td>
<td>20.0</td>
<td>320</td>
</tr>
<tr>
<td>3. - + + + PZ</td>
<td>20</td>
<td>17.8</td>
<td>290</td>
</tr>
<tr>
<td>4. - + + + TTCU</td>
<td>20</td>
<td>21.6</td>
<td>350</td>
</tr>
<tr>
<td>5. - + + + TTFE</td>
<td>20</td>
<td>18.3</td>
<td>290</td>
</tr>
<tr>
<td>6. - + + + TTFE</td>
<td>20</td>
<td>19.6</td>
<td>320</td>
</tr>
</tbody>
</table>

図3 キュラスタメータ加硫曲線、100℃